Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters










Publication year range
1.
Small ; : e2309321, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528424

ABSTRACT

A paucity of redox centers, poor charge transport properties, and low structural stability of organic materials obstruct their use in practical applications. Herein, these issues have been addressed through the use of a redox-active salen-based framework polymer (RSFP) containing multiple redox-active centers in π-conjugated configuration for applications in lithium-ion batteries (LIBs). Based on its unique architecture, RSFP exhibits a superior reversible capacity of 671.8 mAh g-1 at 0.05 A g-1 after 168 charge-discharge cycles. Importantly, the lithiation/de-lithiation performance is enhanced during operation, leading to an unprecedented reversible capacity of 946.2 mAh g-1 after 3500 cycles at 2 A g-1. The structural evolution of RSFP is studied ex situ using X-ray photoelectron spectroscopy, revealing multiple active C═N, C─O, and C═O sites and aromatic sites such as benzene rings. Remarkably, the emergence of C═O originated from C─O is triggered by an electrochemical process, which is beneficial for improving reversible lithiation/delithiation behavior. Furthermore, the respective strong and weak binding interactions between redox centers and lithium ions, corresponding to theoretical capacities of 670.1 and 938.2 mAh g-1, have been identified by density functional theory calculations manifesting 14-electron redox reactions. This work sheds new light on routes for the development of redox-active organic materials for energy storage applications.

2.
Biophys Chem ; 309: 107229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555653

ABSTRACT

The study specifically investigates the solubilities of L-isoleucine and L-tyrosine in water-mixed solvent systems (DMF, DMSO, and ACN), exploring the behaviour of amino acids in complex environments. The experimental methods prioritize meticulous solvent purification to ensure reliable results. The work explores solubility data, uncovering temperature-dependent trends and intricate interactions influencing solubility in the chosen mixed solvent systems. The study emphasizes the impact of thermodynamic properties, solvent-solvent interactions, and amino acid structure on solubility patterns. The broader implications highlight the relevance of understanding amino acid behaviour in diverse solvent environments, offering potential applications in cosmetics and pharmaceutical industries. The distinct solubility patterns contribute valuable insights, enhancing on the understanding of the solution stability and interactions of L-isoleucine and L-tyrosine in different solvent systems. In conclusion, work suggests the enhanced utilization of L-isoleucine and L-tyrosine in various industries, driven by a profound understanding of their solubility in mixed solvent systems. The research expands our knowledge of amino acid behaviour, paving the way for advancements in industries relying on protein-based products and technologies.


Subject(s)
Amino Acids , Isoleucine , Solvents/chemistry , Solubility , Tyrosine , Thermodynamics , Water/chemistry
3.
Langmuir ; 40(8): 4063-4076, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38354294

ABSTRACT

Highly efficient nanocatalysts with a high specific surface area were successfully synthesized by a cost-effective and environmentally friendly hydrothermal method. Structural and elemental purity, size, morphology, specific surface area, and band gap of pristine and 1 to 5% Cu-doped TiO2 nanoparticles were characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), energy dispersive X-ray analysis (EDAX), inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography-high resolution mass spectrometry (LC-HRMS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area, Raman spectroscopy, photoluminescence spectroscopy (PL) and UV-visible diffused reflectance spectroscopy (UV-DRS) studies. The XPS and EPR findings indicated the successful integration of Cu ions into the TiO2 lattice. UV-DRS and BET surface area investigations revealed that with an increase in dopant concentration, Cu-doped TiO2 NPs show a decrease in band gap (3.19-3.08 eV) and an increase in specific surface area (169.9-188.2 m2/g). Among all compositions, 2.5% Cu-doped TiO2 has shown significant H2 evolution with an apparent quantum yield of 17.67%. Furthermore, the electrochemical water-splitting study shows that 5% Cu-doped TiO2 NPs have superiority over pristine TiO2 for H2 evolution reaction. It was thus revealed that the band gap tuning with the desired dopant concentration led to enhanced photo/electrocatalytic sustainable energy applications.

4.
J Mol Model ; 30(3): 76, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376621

ABSTRACT

CONTEXT: The purpose of the S01-S05 series of end-capped modified donor chromophores is to amplify the energy conversion efficiency of organic solar cells. Using quantum chemical modeling, the photophysical and photoelectric characteristics of the S01-S05 geometries are examined. METHOD: The influence of side chain replacement on multiple parameters, including the density of states (DOS), molecular orbital analysis (FMOS), exciton-binding energy (Eb), molecular electrostatic potential analysis, dipole moment (µ), and photovoltaic characteristics including open circuit voltage (VOC), and PCE at minimal energy state geometries, has been investigated employing density functional theory along with TD-DFT analysis. The molar absorption coefficient (λmax) of all the proposed compounds (S01-S05) was efficiently enhanced by the terminal acceptor alteration technique, as demonstrated by their scaling up with the reference molecule (SR). Among all molecules, S04 has shown better absorption properties with a red shift in absorption having λmax at 845 nm in CHCl3 solvent and narrow energy gap (EG) 1.83 eV with least excitation energy (Ex) of 1.4657 eV. All created donors exhibited improved FF and VOC than the SR, which significantly raised PCE and revealed their great efficiency as OSC. Consequently, the results recommended these star-shaped molecules as easily attainable candidates for constructing extremely efficient OSCs.

5.
Sci Technol Adv Mater ; 25(1): 2292485, 2024.
Article in English | MEDLINE | ID: mdl-38259326

ABSTRACT

Among various metal-organic frameworks (MOFs), the zeolitic imidazole framework (ZIF), constructed by the regular arrangement of 2-methylimidazole and metal ions, has garnered significant attention due to its distinctive crystals and pore structures. Variations in the sizes and shapes of ZIF crystals have been reported by changing the synthesis parameters, such as the molar ratios of organic ligands to metal ions, choice of solvents, and temperatures. Nonetheless, the giant ZIF-8 single crystals beyond the typical range have rarely been reported. Herein, we present the synthesis of millimeter-scale single crystal ZIF-8 using the solvothermal method in N,N-diethylformamide. The resulting 1-mm single crystal is carefully characterized through N2 adsorption-desorption isotherms, scanning electron microscopy, and other analytical techniques. Additionally, single-crystal X-ray diffraction is employed to comprehensively investigate the framework's mobility at various temperatures.


Millimeter-sized ZIF-8 single crystals were synthesized using the solvothermal method. These crystals exhibit a notable BET surface area of 1681 m2∙g−1 and demonstrate a reversible change in their crystal structure.

6.
Environ Res ; 241: 117669, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37980993

ABSTRACT

The current work concentrates on the fabrication of Ga doped Co0.6Cu0.4Fe2O4 nanocatalysts via sol-gel auto-combustion (SGA) for the production of green and sustainable source of energy i.e., hydrogen through photocatalytic and electrocatalytic routes. Single-phased cubic crystal structure with Fd3m geometry was observed through XRD patterns. FESEM images show the aggregated and spherical shaped grains with distinct grain boundaries and average grain size of 1.04 and 1.39 µm for the Co0.6Cu0.4Fe2O4, and Co0.6Cu0.4Ga0.02Fe1.98O4 nanomaterials. Soft magnetic behaviour with a coercivity (Hc) and saturation magnetization (Ms) of 235.32-357.26 Oe and 54.65-61.11 emu/g was obtained for the produced nanomaterials. The estimation of photocatalytic nature for generating H2 was conducted using the sacrificial agents i.e., 0.128 M Na2S and 0.079 M Na2SO3. The analysis focused on measuring the maximum H2 generation was achieved by photocatalysts throughout three consecutive 4-h cycles. Out of all compositions, Co0.6Cu0.4Ga0.02Fe1.98O4 nanomaterial have the highest photocatalytic activity of 16.71 mmol gcat-1. However, the electrocatalytic behaviour of prepared Co0.6Cu0.4GaxFe2-xO4 (x = 0.00-0.03) electrocatalysts were determined for HER (Hydrogen evolution reaction) reaction. The overpotential values of Co0.6Cu0.4Fe2O4, Co0.6Cu0.4Ga0.01Fe1.99O4, Co0.6Cu0.4Ga0.02Fe1.98O4, and Co0.6Cu0.4Ga0.03Fe1.97O4 catalysts at 10 mA cm-2 were -0.81, -0.85, -1.03, and 1.21 V, correspondingly. Thus, at cathode current density of 10 mA/cm-2, an elevation in overpotential was noted, which indicates that the undoped Co0.6Cu0.4Fe2O4 (x = 0.00) electrocatalyst have remarkable electrocatalytic HER activity. Consequently, owing to photo/electro catalytic water splitting traits, the prepared catalysts are highly efficient for the green hydrogen generation.


Subject(s)
Hydrogen , Nanostructures , Catalysis , Electrodes , Phenotype
7.
Sci Rep ; 13(1): 20104, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973880

ABSTRACT

In opto-electronics, non-fullerene (NF) derivatives are regarded as efficient non-linear optical (NLO) materials. The present investigation was based on designing NF naphthalene-based derivatives (PCMD1-D9) with D-π-A configuration from PCMR. DFT analysis at M06/6-311G (d,p) level was accomplished to explore the photonic behavior of PCMD1-D9 compounds. Various kind of analysis like; UV-Vis, density of state (DOS), natural bond orbitals (NBOs), transition density matrix (TDM) and frontier molecular orbitals (FMOs) analyses were accomplished to understand the NLO properties of said chromophores. The configuration change led to considerable charge distribution over highest occupied and lowest unoccupied molecular orbitals with minimum band difference. The energy gap trend for all the entitled compounds was observed as; PCMD8 < PCMD5 = PCMD9 < PCMD6 < PCMD7 < PCMD4 < PCMD3 < PCMD2 < PCMD1 with the least band gap of 2.048 eV in PCMD8 among all the compounds. The UV-Visible spectrum of the entitled chromophores manifested high values of λmax in derivatives contrary to PCMR. Additionally, NBO findings explored effective intramolecular charge transfer and maximum energy of stabilization (34.31 kcal/mol) for PCMD8 chromophore. The highest linear polarizability (<α>) and dipole moment (µtot) values were exhibited by PCMD5 at 2.712 × 10-22. and 1.995 × 10-17 esu, respectively. PCMD8 push-pull configured molecular entity exhibited highest first hyper-polarizability (ßtot) at 4.747 × 10-27 esu and second hyper-polarizability at 6.867 × 10-32 esu. Overall, all the formulated chromophores exhibited significant NLO results contrary to PCMR. Hence, through this structural tailoring via various acceptors, effective NLO materials were obtained for optoelectronic applications.

8.
Front Med (Lausanne) ; 10: 1275684, 2023.
Article in English | MEDLINE | ID: mdl-37881627

ABSTRACT

Pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD) is classified as Group 3 PH, with no current proven targeted therapies. Studies suggest that cigarette smoke, the most risk factor for COPD can cause vascular remodelling and eventually PH as a result of dysfunction and proliferation of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). In addition, hypoxia is a known driver of pulmonary vascular remodelling in COPD, and it is also thought that the presence of hypoxia in patients with COPD may further exaggerate cigarette smoke-induced vascular remodelling; however, the underlying cause is not fully understood. Three main pathways (prostanoids, nitric oxide and endothelin) are currently used as a therapeutic target for the treatment of patients with different groups of PH. However, drugs targeting these three pathways are not approved for patients with COPD-associated PH due to lack of evidence. Thus, this review aims to shed light on the role of impaired prostanoids, nitric oxide and endothelin pathways in cigarette smoke- and hypoxia-induced pulmonary vascular remodelling and also discusses the potential of using these pathways as therapeutic target for patients with PH secondary to COPD.

9.
Sci Rep ; 13(1): 14630, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37670033

ABSTRACT

Fullerene free organic chromophores are widely utilized to improve the efficacy of photovoltaic materials. Herein, we designed D-π-A-π-D form chromophores (TAZD1-TAZD5) via end-capped redistribution of donor moieties by keeping the same π-bridge and central acceptor unit for organic solar cells (OSCs). To analyze the photovoltaic characteristics of these derivatives, DFT estimations were accomplished at B3LYP/6-311 G (d,p) functional. Different investigations like frontier molecular orbital (FMO), absorption spectra (UV-Vis), density of states (DOS), binding energy (Eb), open circuit voltage (Voc), and transition density matrix (TDMs) were performed to examine the optical, photophysical and electronic characteristics of afore-mentioned chromophores. A suitable band gap (∆E = 2.723-2.659 eV) with larger bathochromic shift (λmax = 554.218-543.261 nm in acetonitrile) was seen in TAZD1-TAZD5. An effective charge transference from donor to acceptor via spacer was observed by FMO analysis which further supported by DOS and TDM. Further, lower binding energy values also supported the higher exciton dissociation and greater CT in TAZD1-TAZD5. Among all the designed chromophores, TAZD5 exhibited the narrowest Egap (2.659 eV) and maximum red-shifted absorption in solvent as well as gas phase i.e. 554.218 nm and 533.219 nm, respectively which perhaps as a result of the phenothiazine-based donor group (MPT). In a nutshell, all the tailored chromophores can be considered as efficient compounds for promising OSCs with a good Voc response, interestingly, TAZD5 is found to be excellent chromophores as compared to all these designed compounds.

10.
Sci Rep ; 13(1): 15064, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37699905

ABSTRACT

To meet the rising requirement of photovoltaic compounds for modernized hi-tech purpose, we designed six new molecules (DTPD1-DTPD6) from banana shaped small fullerene free chromophore (DTPR) by structural tailoring at terminal acceptors. Frontier molecular orbitals (FMOs), density of states (DOS), open circuit voltage (Voc), transition density matrix (TDM) analysis, optical properties, reorganization energy value of hole and electron were determined utilizing density function theory (DFT) and time-dependent density function theory (TD-DFT) approaches, to analyze photovoltaic properties of said compounds. Band gap contraction (∆E = 2.717-2.167 eV) accompanied by larger bathochromic shift (λmax = 585.490-709.693 nm) was observed in derivatives contrary to DTPR. The FMOs, DOS and TDMs investigations explored that central acceptor moiety played significant role for charge transformation. The minimum binding energy values for DTPD1-DTPD6 demonstrated the higher exciton dissociation rate with greater charge transferal rate than DTPR, which was further endorsed by TDM and DOS analyses. A comparable Voc (1.49-2.535 V) with respect to the HOMOPBDBT-LUMOacceptor for entitled compounds was investigated. In a nutshell, all the tailored chromophores can be considered as highly efficient compounds for promising OSCs with a good Voc response.

11.
ACS Omega ; 8(32): 29414-29423, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37599924

ABSTRACT

Five new difluorinated biphenyl compounds, 4'-(tert-butyl)-3,4-difluoro-1,1'-biphenyl (TBDFBP), 1-(3',4'-difluoro-[1,1'-biphenyl]-4-yl)ethanone (DFBPE), 3',4'-difluoro-2,5-dimethoxy-1,1'-biphenyl (DFDMBP), 3,4-difluoro-3'-nitro-1,1'-biphenyl (DFNBP), and (3',4'-difluoro-[1,1'-biphenyl]-3-yl)(methyl)sulfane (DFBPMS), have been successfully synthesized by the well-known Suzuki-Miyaura coupling with excellent yields averaging 78%. UV-visible, Fourier transform infrared ,and 13C NMR and 1H NMR spectroscopies along with single-crystal X-ray diffraction (SC-XRD) analysis (for TBDFBP and DFBPE) were used for the structure elucidation of the synthesized compounds. The SC-XRD results demonstrated the crystal systems of the studied compounds, TBDFBP and DFBPE, to be monoclinic, and their space groups were found to be P21/c. Also, a detailed density functional theory study was performed. The calculated structures for TBDFBP and DFBPE were found to agree quite well with the experimental results. The natural bonding orbital charge analysis suggested that molecules of these compounds should interact quite noticeably with each other in the solid phase and with polar solvent molecules. Molecular electrostatic potential analysis suggests that accumulation of positive and negative potential implies possibility of quite significant dipole-dipole intermolecular interactions in crystals of these compounds, as well as quite strong interactions with polar solvent molecules. The global reactivity parameters analysis suggests all compounds to be quite stable in redox reactions, with the compound DFNBP being relatively more reactive and the compounds TBDFBP and DFDMBP being relatively more stable.

12.
ACS Omega ; 8(33): 30186-30198, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636949

ABSTRACT

In the current study, two organic salts (1 and 2) are synthesized, and then crystalline structures are characterized by FTIR, UV spectroscopy, and X-ray crystallographic studies. The organic salts 1 and 2 are optimized at the M06/6-311G(d,p)level of theory and further utilized for analysis of natural bond orbitals (NBOs), natural population, frontier molecular orbitals (FMOs), and global reactivity parameters, which confirmed the stability of the studied compounds and charge transfer phenomenon in the studied compounds. The studies further revealed that 1 and 2 are more stable than 3. The lowest energy merged monomer-coformer conformations were docked as flexible ligands with rigid fungal proteins and DNA receptors. The stagnant binding of the monomer through two H bonds with protein was observed for ligands 1 and 3 while different pattern was found with 2. The coformers formed a single H bond with the active site in 2 and 3 and a single pi-arene H interaction in 1. The two-point ligand-receptor interactions hooked the monomer between DNA base pairs for partial intercalation; pi stacking with additive hydrogen bonding with the base pair led to a strong benzimidazole interaction in 1 and 2, whereas ethylene diamine formed weak H bonding. Thus, the molecular docking predicted that the coformer exhibited DNA intercalation reinforced by its salt formation with benzimidazole 1 and methyl benzimidazole 2. Antioxidant studies depicted that 3 has a higher IC50 value than that of 2,4-D and also the largest value among the studied compounds, whereas 2 showed the lowest value among the studied compounds.

13.
ACS Omega ; 8(30): 27488-27499, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37546612

ABSTRACT

Hydrazone compounds with remarkable nonlinear optical (NLO) properties were found with vast applications due to their cost-effective synthesis and greater stability. Therefore, we synthesized hydrazone scaffolds (TCAH1-TCAH8) by condensation reaction, and their structural confirmation was accomplished with spectroscopic methods (1H-, 13C-NMR, and HRMS). Quantum chemical calculations were also performed at B3PW91/6-311G(d,p) functional of DFT to explore electronic, structural, and chemical properties. To understand the NLO responses of afore-said chromophores, various kinds of analyses such as natural bonding orbitals (NBOs), frontier molecular orbitals (FMOs), UV-vis analysis, and density of states (DOS) were performed. Findings showed that the HOMO-LUMO energy gap in TCAH8 (3.595 eV) was found to be lower than the TCAH1-TCAH7 (4.123-3.932 eV) with a large red shift which leads to a substantial NLO response. Furthermore, strong intramolecular interactions showed the highest stabilization energy (24.1 kcal mol-1) for TCAH8 in the NBO transitions, combined with the least binding energy. The significant NLO response of TCAH4 was explored with ⟨α⟩, ßtot, and ⟨γ⟩ values as 5.157 × 10-23, and 2.185 × 10-29, and 2.753 × 10-34 esu, respectively, among the entitled compounds. The recent findings may inspire scientists to develop extremely effective NLO materials for forthcoming hi-tech applications.

14.
ACS Omega ; 8(25): 22673-22683, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396273

ABSTRACT

Organic compounds exhibit significant nonlinear optical (NLO) properties and can be utilized in various areas like optical parameters, fiber optics, and optical communication. Herein, a series of chromophores (DBTD1-DBTD6) with an A-π1-D1-π2-D2 framework was derived from a prepared compound (DBTR) by varying the structure of π-spacer and terminal acceptor. The DBTR and its investigated compounds were optimized at the M06/6-311G(d,p) level of theory. Frontier molecular orbitals (FMOs), nonlinear optical (NLO) properties, global reactivity parameters (GRPs), natural bonding orbital (NBO), transition density matrix (TDM), molecular electrostatic potential (MEP), and natural population analysis (NPA) were accomplished at the abovementioned level to describe the NLO findings. DBTD6 has the lowermost band gap (2.131 eV) among all of the derived compounds. The decreasing order of highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap values was DBTR > DBTD1 > DBTD2 > DBTD3 > DBTD4 > DBTD5 > DBTD6. The NBO analysis was carried out to describe noncovalent interactions such as conjugative interactions and electron delocalization. From all of the examined substances, DBTD5 showed the highest λmax value at 593.425 nm (in the gaseous phase) and 630.578 nm (in chloroform solvent). Moreover, the ßtot and ⟨γ⟩ amplitudes of DBTD5 were noticed to be relatively greater at 1.140 × 10-27 and 1.331 × 10-32 esu, respectively. So, these outcomes disclosed that DBTD5 depicted the highest linear and nonlinear properties in comparison to the other designed compounds, which underlines that it could make a significant contribution to hi-tech NLO devices.

15.
Chemosphere ; 320: 138015, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36746247

ABSTRACT

Doping-induced vacancy engineering of graphitic carbon nitride (GCN) is beneficial for bandgap modulation, efficient electronic excitation, and facilitated charge carrier migration. In this study, synthesis of oxygen and sulphur co-doped induced N vacancies (OSGCN) by the hydrothermal method was performed to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) antibiotic degradation and H2 production. The results from experimental and DFT simulation studies validate the synergistic effects of co-dopants and N-vacancies, i.e., bandgap lowering, electron-hole pairs separation, and high solar energy utilization. The substitution of sp2 N atom by O and S co-dopants causes strong delocalization of HOMO-LUMO distribution, enhancing carrier mobility, increasing reactive sites, and facilitating charge-carrier separation. Remarkably, OSGCN/PMS photocatalytic system achieved 99.4% SMX degradation efficiency and a high H2 generation rate of 548.23 µ mol g-1 h-1 within 60 min and 36 h, respectively under visible light irradiations. The SMX degradation kinetics was pseudo-first-order with retained recycling efficiency up to 4 catalytic cycles. The results of EPR and chemical scavenging experiments revealed the redox action of reactive oxidative species, wherein 1O2 was the dominant reactive species in SMX degradation. The identification of formed intermediates and the SMX stepwise degradation pathway was investigated via LC-MS analysis and DFT studies, respectively. The results from this work anticipated deepening the understanding of PMS activation by substitutional co-doping favoring N-vacancy formation in GCN lattice for improved photocatalytic activity.


Subject(s)
Graphite , Sulfamethoxazole , Sulfamethoxazole/chemistry , Peroxides/chemistry , Graphite/chemistry , Oxygen
16.
J Colloid Interface Sci ; 638: 220-230, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36738545

ABSTRACT

This work reports the incorporation of coordinated water into Ni-BTC nanorods (Ni-BTC-O) which induces their structural transformation to Ni-BTC nanofibres (Ni-BTC-F). The carbonization of the Ni-BTC nanofibres at 600 °C results in the formation of carbon nanotube (CNT)-decorated hierarchical porous nickel/carbon hybrid (labelled as Ni/C-600) with enlarged pores. In contrast, the Ni/C hybrid obtained from the carbonization of the original (unmodified) Ni-BTC nanorods (Ni-BTC-O) at 600 °C (labelled as Ni-BTC-O-600) exhibits smaller pore size and does not show the formation of CNTs. The Ni/C-600 hybrid derived from Ni-BTC-F shows a very high adsorption capacity of 686.8 mg g-1 toward methyl blue (MB) dye. This is approximately 4.8 times higher than the adsorption capacity of Ni-BTC-O-600 (144.1 mg g-1). The higher adsorption performance of Ni/C-600 relative to Ni-BTC-O-600 can be attributed to its larger pore volume, hierarchical porosity, and additional adsorption sites provided by the CNTs. In addition, the Ni/C-600 hybrid can maintain 90% of its adsorption capacity after 5 consecutive cycles, demonstrating its potential as an efficient and recyclable adsorbent for MB dye.


Subject(s)
Metal-Organic Frameworks , Nanotubes, Carbon , Metal-Organic Frameworks/chemistry , Nickel/chemistry , Porosity , Adsorption
17.
Int J Biol Macromol ; 226: 1284-1308, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36574582

ABSTRACT

In recent times, green chemistry or "green world" is a new and effective approach for sustainable environmental remediation. Among all biomaterials, cellulose is a vital material in research and green chemistry. Cellulose is the most commonly used natural biopolymer because of its distinctive and exceptional properties such as reproducibility, cost-effectiveness, biocompatibility, biodegradability, and universality. Generally, coupling cellulose with other nanocomposite materials enhances the properties like porosity and specific surface area. The polymer is environment-friendly, bioresorbable, and sustainable which not only justifies the requirements of a good photocatalyst but boosts the adsorption ability and degradation efficiency of the nanocomposite. Hence, knowing the role of cellulose to enhance photocatalytic activity, the present review is focused on the properties of cellulose and its application in antibiotics, textile dyes, phenol and Cr(VI) reduction, and degradation. The work also highlighted the degradation mechanism of cellulose-based photocatalysts, confirming cellulose's role as a support material to act as a sink and electron mediator, suppressing the charge carrier's recombination rate and enhancing the charge migration ability. The review also covers the latest progressions, leanings, and challenges of cellulose biomaterials-based nanocomposites in the photocatalysis field.


Subject(s)
Cellulose , Environmental Pollutants , Cellulose/chemistry , Reproducibility of Results , Polymers/chemistry , Biocompatible Materials
18.
Chemosphere ; 313: 137610, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563726

ABSTRACT

Formulation of heterojunction with remarkable high efficiency by utilizing solar light is promising to synchronously overcome energy and environmental crises. In this concern, hexagonal-borocarbonitride (h-BCN) based Z-schemes have proved potential candidates due to their spatially separated oxidation and reduction sites, robust light-harvesting ability, high charge pair migration and separation, and strong redox ability. H-BCN has emerged as a hotspot in the research field as a metal-free photocatalyst with a tunable bandgap range of 0-5.5 eV. The BCN photocatalyst displayed synergistic benefits of both graphene and boron nitride. Herein, the review demonstrates the current state-of-the-art in the Z-scheme photocatalytic application with a special emphasis on the predominant features of their photoactivity. Initially, fundamental aspects and various synthesis techniques are discussed, including thermal polymerization, template-assisted, and template-free methods. Afterward, the reaction mechanism of direct Z-scheme photocatalysts and indirect Z-scheme (all-solid-state) are highlighted. Moreover, the emerging Step-scheme (S-scheme) systems are briefly deliberated to understand the charge transfer pathway mechanism with an induced internal electric field. This review critically aims to comprehensively summarize the photo-redox applications of various h-BCN-based heterojunction photocatalysts including CO2 photoreduction, H2 evolution, and pollutants degradation. Finally, some challenges and future direction of h-BCN-based Z-scheme photocatalyst in environmental remediation are also proposed.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Graphite , Electricity , Physical Phenomena
19.
Environ Res ; 214(Pt 3): 113953, 2022 11.
Article in English | MEDLINE | ID: mdl-35934147

ABSTRACT

A popular approach to select optimal adsorbents is to perform parallel experiments on adsorbents based on an initially decided goal such as specified product purity, efficiency, or binding capacity. To screen optimal adsorbents, we focused on the max adsorption capacity of the candidates at equilibrium in this work because the adsorption capacity of each adsorbent is strongly dependent on certain conditions. A data-driven machine learning tool for predicting the max adsorption capacity (Qm) of 19 pharmaceutical compounds on 88 biochars was developed. The range of values of Qm (mean 48.29 mg/g) was remarkably large, with a high number of outliers and large variability. Modified biochars enhanced the Qm and surface area values compared with the original biochar, with a statistically significant difference (Chi-square value = 7.21-18.25, P < 0.005). K- nearest neighbors (KNN) was found to be the most optimal algorithm with a root mean square error (RMSE) of 23.48 followed by random forest and Cubist with RMSE of 26.91 and 29.56, respectively, whereas linear regression and regularization were the worst algorithms. KNN model achieved R2 of 0.92 and RMSE of 16.62 for the testing data. A web app was developed to facilitate the use of the KNN model, providing a reliable solution for saving time and money in unnecessary lab-scale adsorption experiments while selecting appropriate biochars for pharmaceutical adsorption.


Subject(s)
Water Pollutants, Chemical , Water , Adsorption , Charcoal , Machine Learning , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
20.
Environ Res ; 214(Pt 3): 113995, 2022 11.
Article in English | MEDLINE | ID: mdl-35932830

ABSTRACT

Air pollution is becoming a distinctly growing concern and the most pressing universal problem as a result of increased energy consumption, with the multiplication of the human population and industrial enterprises, resulting in the generation of hazardous pollutants. Among these, carbon monoxide, nitrogen oxides, Volatile organic compounds, Semi volatile organic compounds, and other inorganic gases not only have an adverse impact on human health both outdoors and indoors, but have also substantially altered the global climate, resulting in several calamities around the world. Thus, the purification of air is a crucial matter to deal with. Photocatalytic oxidation is one of the most recent and promising technologies, and it has been the subject of numerous studies over the past two decades. Hence, the photocatalyst is the most reassuring aspirant due to its adequate bandgap and exquisite stability. The process of photocatalysis has provided many benefits to the atmosphere by removing pollutants. In this review, our work focuses on four main themes. Firstly, we briefly elaborated on the general mechanism of air pollutant degradation, followed by an overview of the typical TiO2 photocatalyst, which is the most researched photocatalyst for photocatalytic destruction of gaseous VOCs. The influence of operating parameters influencing the process of photocatalytic oxidation (such as mass transfer, light source and intensity, pollutant concentration, and relative humidity) was then summarized. Afterwards, the progress and drawbacks of some typical photoreactors (including monolithic reactors, microreactors, optical fiber reactors, and packed bed reactors) were described and differentiated. Lastly, the most noteworthy coverage is dedicated to different types of modification strategies aimed at ameliorating the performance of photocatalysts for degradation of air pollutants, which were proposed and addressed. In addition, the review winds up with a brief deliberation for more exploration into air purification photocatalysis.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Volatile Organic Compounds , Air Pollution/prevention & control , Catalysis , Gases , Humans , Metals , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...